Heat load in buildings
Contents |
[edit] What is heat load?
Heat load (or heating load) in relation to building physics refers to the amount of heating or cooling necessary to maintain the required temperature in a building or space within that building. This can be determined in relation either to the required heating or the required cooling.
The use of passive design can reduce the heat load for a building.
[edit] Required heating
It can be used to refer to the quantity of heat per unit of time (usually over an hour) that is required to heat a given space in order to maintain it at a given temperature. In poorly insulated, poorly sealed buildings, the heat load will be greater than in thermally efficient buildings. In contrast, in a building with a very high level of thermal efficiency, the heating demand can be practically negligible. In Passive houses, this is around 10W/m2 which is roughly 10% of the energy used in conventional buildings.
For more information see: Heating.
[edit] Required cooling capacity
The term heat load can also refer to the capacity required from a cooling system to maintain the temperature in a building or space below a required level. This must take account of all potential heat-producing activities (heat sources). This includes external heat sources such as solar radiation, and internal heat sources such as people, lighting, kitchens, computers and other equipment, and so on.
For example, a data centre housing computers and servers will produce a certain heat load that derives from an electrical load. This heat load will have to be absorbed and conveyed to the exterior by the building’s cooling system. Once the heat load is quantified, building services engineers can design the necessary cooling system to ensure it can effectively keep the space at the desired temperature.
A rough and ready method for calculating heat load in offices containing 2-3 workers and 3-4 computers is given by the following formula:
- Heat load (BTU) = Length (m) x Width (m) x Height (m) x 141
- So, for a room measuring 5m x 4m x 3m = 60 > x 141 = 8,460 BTU.
- (For measurements in feet, the formula becomes: Heat load (BTU) = Length (m) x Width (m) x Height (m) x 4)
Where there are more occupants, add 500 BTU for every additional person:
So, if four extra occupants arrive, the heat load will be:
- 8,460 + (500 x 4) = 10,460 BTU.
Heat load (and heat gain) can also be expressed in kilowatts (kW).
- To convert BTU to kW, 1 BTU = 0.00029307107 kW.
- So, from the example above, 10,460 BTU = 3.065 kW.
The method described above can provide an outline idea of the heat load. More detailed methods should be used to achieve greater accuracy.
For more information see: Cooling.
[edit] Balance point
The term balance point refers to the external temperature below which a building is likely to need to be heated, and above which it is likely to need to be heated to achieve the required internal temperature. This is the point at which the building’s heat gains (people, equipment, solar radiation and so on) are equal to its heat losses (through the building fabric).
It is important that a comfortable internal temperature is set with determining heat loads and balance points.
[edit] Related articles on Designing Buildings
Featured articles and news
International Women's Day 8 March, 2025
Accelerating Action for For ALL Women and Girls: Rights. Equality. Empowerment.
Lack of construction careers advice threatens housing targets
CIOB warning on Government plans to accelerate housebuilding and development.
Shelter from the storm in Ukraine
Ukraine’s architects paving the path to recovery.
BSRIA market intelligence division key appointment
Lisa Wiltshire to lead rapidly growing Market Intelligence division.
A blueprint for construction’s sustainability efforts
Practical steps to achieve the United Nations Sustainable Development Goals.
Timber in Construction Roadmap
Ambitious plans from the Government to increase the use of timber in construction.
ECA digital series unveils road to net-zero.
Retrofit and Decarbonisation framework N9 launched
Aligned with LHCPG social value strategy and the Gold Standard.
Competence framework for sustainability
In the built environment launched by CIC and the Edge.
Institute of Roofing members welcomed into CIOB
IoR members transition to CIOB membership based on individual expertise and qualifications.
Join the Building Safety Linkedin group to stay up-to-date and join the debate.
Government responds to the final Grenfell Inquiry report
A with a brief summary with reactions to their response.
A brief description and background to this new February law.
Everything you need to know about building conservation and the historic environment.
NFCC publishes Industry White Paper on Remediation
Calling for a coordinated approach and cross-departmental Construction Skills Strategy to manage workforce development.
'who blames whom and for what, and there are three reasons for doing that: legal , cultural and moral"
Comments
[edit] To make a comment about this article, click 'Add a comment' above. Separate your comments from any existing comments by inserting a horizontal line.